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AVERAGING OF THE HEAT-TRANSFER COEFFICIENT 
IN THE PROCESSES OF HEAT EXCHANGE WITH 
PERIODIC INTENSITY 

Yu. B. Zudin UDC 66.045 

This work presents a proof of the inequali~ that determines the relation between two values of the 
heat-transfer coefficient averaged by different procedures in processes of heat exchange with periodic 
intensity. 

In [1], an approximate method is suggested to investigate a conjugate "heat carrier-wall" problem for 
heat-exchange processes whose intensity changes periodically along the heat-exchange surface (along the coor- 
dinate z) and in time x. We consider a boundary-value problem for the two-dimensional nonstationary equation 
of heat conduction in a wall (a plate of thickness 6) with the third-kind boundary condition at x = 8 

q~ (1) 
% 

and the appropriate boundary condition at x = 0. All the quantities in Eq. (l) are represented in the form of 
superposition of the averaged and periodic components 

q s = ( q s ) ( l + ~ ) ,  0 8 = ( 0 ~ ) ( 1 + ~ 8 ) ,  O~=(Ot)( l+~).  (2) 

Substitution of Eq. (2) into Eq. (1) and averaging yield 

(3) 

Introducing the notation 

~m-- 
(q~) 

(%) 
(4) 

and taking into account that the quantity oqn is measured in traditional heat-exchange experiments and is used 
in applied calculations, we call it the "experimental heat-transfer coefficient." The quantity (c~), prescribed a 
priori in boundary condition (1), is called the "averaged true heat-transfer coefficient." 

The difference in the values of the heat-transfer coefficient averaged by procedures (3) and (4) can be 
conveniently characterized as the "conjugation parameter": 

= c ~  (5) 

In [1], for a number of particular cases the double inequality below was proved 
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( 1 +1---~ ) -1  N E_< 1 , (6) 

from which it follows that the experimental heat-transfer coefficient is smaller than the averaged true heat- 
transfer coefficient (the sign of equality is attained in the limit of an infinitely heat-conducting wall). 

In [2-6], in analyzing practical applications of the method of [1], we used the conjugation parameter 
as a correction factor that accounted for the entire complex of the influence of a solid wall on the quantity 

(X m (the thermophysical properties and thickness of the wall, the method of supplying heat to the solid body 
and its geometry, the amplitude, the spatial and time periods of pulsations): Ctm = e(~z). The objective of the 
present work is to prove in general form double inequality (6) that determines the range of variation in the 
conjugation parameter e. 

Proof of the inequali~, e < 1. First, we prove the auxiliary inequality 

('0,5 q',~) < O. (7) 

A heat-conduction equation for a periodic component of the temperature field with allowance for the 
Fourier law 

q ' "=- -~7"~X ' q:----O~ m aZ (8) 

can be written in the form 

cp-~-  = -  Otm/-~x + 

Multiplying both sides of Eq. (9) by O, we obtain 

(9) 

Writing the identities 

T a--7 + % "  +-g-_- J = °  

g - - - g - - x  a: - a-Z-.- a: 

(10) 

and using Eq. (8), we rewrite Eq. (10) in 

cp 0702 

2~ m OT 

the form 

- - + - ~ x "  + - ~ - z  + - - ~ - ( q ( + q - ) =  
. (11) 

Integration of both sides of Eq. (11) over x within the limits from 0 to 8 yields 

8 8 8 

0 o 0 

(12) 

Denoting q0--(q0.,~) and qs--(q_,)_,=8, we rewrite Eq.(12) as 

8 8 8 
cp O h f ,~2dx t~ (Zm - 2  

2Ct m 0"t ~ -~zz I ~ ~ :d r - - ' -~  J" (~a2 + q: )dx .  
o o o 

(13) 
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Then, averaging both sides of Eq. (13) over x and z and noting that here the second and third terms on the 
fight-hand side drop out, we obtain 

8 
(3f" m N '~ 

(~8 "qs) = (~o "qo)- T f ('~a~ + q- ) dx . 
0 

(14) 

Now we show that for any type of boundary condition with x = 0 from Eq. (14) there follows the 
validity of auxiliary inequality (7). 

1. Boundary conditions of the first and second kind: (0) = const, (q0) = const. Here either O0 = 0 or 

qo = 0, i.e., (Oct0) = 0, whence 

8 
O f ' m  

o 

(15) 

Since we always have (qx+q~)>0,  from Eq. (15) follows Eq. (7), which was to be proved. 
2. The boundary condition of the third kind: c~ = const. Here 

~o = -  ~ o  o0. (16) 
(X m 

Multiplying both sides of Eq. (16) by ~0 and averaging them, we obtain 

Since 05_>0, from Eq. (17) we have 

(0o qo) = - t x °  (~,~). (17) 
O~ m 

(~o qo) < O. (18) 

Equations (14) and (18) yield 

= -  + q: ) dx . {'08 q8) [ am T 0 (q.,2 ~2 
(19) 

From Eq. (19) follows Eq. (7), which was to be proved. 
3. The boundary condition of the "fourth kind." Suppose that the boundary condition with x = 0 is 

contact with the second plate, on the outer surface of which in turn the boundary condition of the first, second, 
or third kind is prescribed. Transforming the heat-conduction equation for the second plate by means of Eqs. 
(8)-(14), it is easy to obtain the proof of inequality (7). We do not present here the corresponding calculations 
because of their unwieldiness. 

Proof of the inequali~ e < 1. With account for Eqs. (2)-(5), we rewrite Eq. (1) in the form 

c(1 + ~)  = (1 +~,)(1 +7~a). (2o) 

Averaging of Eq. (20) yields 

Multiplying both sides of Eq. (20) by 1 + ~a and averaging them, we obtain 

(21) 
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e(1 + ( O a q a ) ) =  l + 2 ( a o a ) + ( ( 1  + a )  O ~ ) ,  

or, with account for Eq. (21), 

(22) 

E--  
- ((1 + a) ~ ) (23) 

Since 1 + ~ > 0 and Og > O, we have ((1 + ~)~2)> O. It follows that the condition needed for the inequality 

< 1 (24) 

to be satisfied will be the satisfaction of inequality (7), which was proved above. 

Proof  o f  the inequali~ 8 > . Having divided both sides of inequality (20) into the quantity 

e(l + ~), we obtain 

_~ 1 + ~a (25) (1 +O6)- 
l + f i  

Averaging of Eq. (25) yields 

1+---~ ) ~ 1-+--~, 
Having divided both sides of Eq. (26) into ( 1 - ~ ) ,  we will have 

E- 1 ( 1 -1 1 -1 ~ 

( 2 6 )  

(27) 

It is required to prove the inequality 

1 -1 
(28) 

or the equivalent inequality 

- t (  1 ) -I 
- -  _ < 1 .  e 1 + ~  

(29) 

Turning our attention to relation (27), we note that the satisfaction of the inequality 

(30) 

is the condition sufficient for the validity of Eq. (29). 
Multiplication of both sides of Eq. (25) by 1 + qa and averaging yield 

l + a )  + + \ 1 + o ~ /  
(31) 
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or, with account for Eq. (26), 

~ 2  

E - -  

Having divided both sides of Eq. (32) into ( 1  + 1 - ~ > ,  we obtain 

(32) 

1 -1 - 2  
1 _ ( 1 _ _ ~  ) ( q5 

Since we always have 1 > 0 and Clg > 0, then \ 1 - ~ /  \ 1 - ' ~ >  -> 0. It follows that the 

satisfaction of inequality (7) (which was proved above) will be the condition needed to satisfy inequality (29). 
Thus, from Eqs. (24) and (28) follows the validity of double inequality (6) that determines the range 

of variation in the conjugation parameter e in the processes of heat exchange with periodic intensity. 

N O T A T I O N  

"c, time; x and z, transverse and longitudinal coordinates; & wall thickness; )~, p, and c, thermal conduc- 
tivity, density, and specific heat of the wall; ft, true heat-transfer coefficient; ff~n. experimental heat-transfer 
coefficient; e, conjugation parameter; O, temperature; q, heat-flux density; q.v and q:, components of the heat- 
flux density along the coordinates x and z, respectively; ( ) ,  averaging over time x and over the coordinate z; 
tilde, dimensionless periodic component. Subscripts: & conditions with x = & 0, conditions with x = 0. 
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